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ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS
AND CLASS NUMBERS OF REAL QUADRATIC

FUNCTION FIELDS

Pyung-Lyun Kang*

Abstract. We examine fundamental units of quadratic function
fields from continued fraction of

√
D. As a consequence, we give

another proof of geometric analog of Ankeny-Artin-Chowla-Mordell
conjecture and bounds for class number, and study real quadratic
function fields of minimal type with quasi-period 4.

1. Introduction

Let D be a positive square-free integer and let u = r+s
√

D
σ be a

fundamental unit of the real quadratic number fieldQ(
√

D), where σ = 2
if D ≡ 1 mod 4 and σ = 1 otherwise. Ankeny-Artin-Chowla-Mordell
conjecture can be written that s 6≡ 0 mod D when D is a prime number.
Although this conjecture is checked to be true for many primes, neither
a counter example nor proof is found. On the other hand, the geometric
version is simpler and is proved in [12].

In this paper, we examine fundamental units of quadratic function
fields from continued fraction of

√
D following the similar method as in

[2] for real quadratic number fields. As applications, we give another
proof of geometric analog of Ankeny-Artin-Chowla-Mordell conjecture
and better bounds for class numbers and study real quadratic function
fields of minimal type with quasi-period 4.
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2. Continued fractions and fundamental units: odd charac-
teristic

Throughout this paper we fix some notations.
Let q be a power of an odd prime p, A = Fq[t], k = Fq(t) and A+

be the subset of A consisting of monic polynomials. We always assume
that D ∈ A+ is a squarfree monic polynomial of even degree 2d where
kD := k(

√
D), OD the integral closure of A in kD and εD = TD +UD

√
D,

TD, UD ∈ A the fundamental unit of kD, i.e. the generator of O∗
D/F∗q .

Let x ∈ kD and x = [A0, A1, . . .] be the continued fraction of x.
Define

Q−1(x) = 0, Q0(x) = 1

Qn(x) = AnQn−1(x) + Qn−2(x) for n ≥ 1

P−1(x) = 1, P0(x) = A0

Pn(x) = AnPn−1(x) + Pn−2(x) for n ≥ 1.

Let B1, . . . , Bn be nonconstant polynomials in A. Define

Q(∅) = 1, Q(B1) = B1 and

Q(B1, . . . , Bi+1) = Bi+1Q(B1, . . . , Bi) + Q(B1, . . . , Bi−1).

For c ∈ F∗q , we say that the ordered set {B1, . . . , Bn} is c-symmetric if
Bn−i = c(−1)i

Bi+1 for all 0 ≤ i < n
2 . The definition of c-symmetry in [3]

is incorrect. Note that if n is odd, then c must be 1. It is well-known
that the continued fraction of

√
D is of the form

[A0 : B1, . . . , Bm−1, 2A0/c,Bm−1, . . . , B1, 2A0],

and the fundamental unit εD of kD for square-free D is given by

εD = Pm−1(
√

D) + Qm−1(
√

D)
√

D

where {B1, . . . , Bm−1} is c-symmetric, Pm−1 = A0Q(B1, . . . , Bm−1) +
Q(B2, . . . , Bm−1) and Qm−1 = Q(B1, . . . , Bm−1). Since c-symmetricity
of {B1, . . . , Bm−1} implies Q(B2, . . . , Bm−1) = cQ(B1, . . . , Bm−2), we
have

TD = A0Q(B1, . . . , Bm−1) + cQ(B1, . . . , Bm−2) and

UD = Q(B1, . . . , Bm−1).

The following theorem is given in [3], Theorem 2.1.
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Theorem 2.1. Let m be a positive integer and c ∈ F∗q , and let
{B1, . . . , Bm−1} be a set of nonconstant polynomials in A. Then the
equation

√
D = [[

√
D], B1, . . . , Bm−1, 2[

√
D]/c,Bm−1, . . . , B1, 2[

√
D]]

has infinitely many solutions D ∈ A+ if and only if {Bi} is c-symmetric,

where [
√

D] denotes the polynomial part of
√

D. In this case,

D = D(X) = αX2 + βX + γ

with polynomial coefficients α, β and γ as X ranges over Fq[t], where
α = 1, β = 0 and γ = c for m = 1, and, for m > 1,

α = Q(B1, . . . , Bm−1)2,

β = 3cQ(B1, . . . , Bm−2) + (−1)m+1c2Q(B1, . . . , Bm−2)3,

γ = c(cQ(B1, . . . , Bm−2)2/4 + (−1)m+1)Q(B2, . . . , Bm−2)2.

In fact,

A0 = [
√

D]

=
(−1)m+1

2
cQ(B1, . . . , Bm−2)Q(B2, . . . , Bm−2) + XQ(B1, . . . , Bm−1),

(2.1)

and

(2.2)
D −A2

0 = (−1)m+1cQ(B2, . . . , Bm−2)2 + 2XcQ(B1, . . . , Bm−2)

=
2A0cQ(B1, . . . , Bm−2) + cQ(B2, . . . , Bm−2)

Q(B1, . . . , Bm−1)
.

Note that the discriminant β2 − 4αγ of D(X) is (−1)m4c, which is a
unit.

Let m be a positive integer and {B1, . . . , Bm−1} be a c-symmetric
set. Define the set S(m; B1, . . . , Bm−1) by

S(m; B1, . . . , Bm−1) : = {D ∈ A+ : D is squarefree of even degree with
√

D = [A0;B1, . . . , Bm−1, 2A0/c,Bm−1, . . . , B1, 2A0] }.
The following theorem is the main theorem of this section.

Theorem 2.2. For all D = D(X) ∈ S(m; B1, . . . , Bm−1), we have
deg UD < deg D unless

X = X0 :=

[
(−1)m

2 cQ(B1, . . . , Bm−2)Q(B2, . . . , Bm−2)
Q(B1, . . . , Bm−1)

]
.
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Proof. For m ≤ 3 it is easy to see that deg A0 ≥ deg Q(B1, . . . , Bm−1) =
deg UD from the equation (2.1). Thus deg D = 2deg A0 > deg UD as
desired. Now assume m ≥ 4. Since deg D = 2 deg A0 and deg UD =
deg Q(B1, . . . , Bm−1) = deg B1 + . . . + deg Bm−1, it is clear from (2.1)
that deg D ≥ 2 deg UD > deg UD unless leading terms of two parts of A0

in (2.1) are cancelled out, i.e., X is the polynomial part of
(−1)m

2 cQ(B1, . . . , Bm−2)Q(B2, . . . , Bm−2)
Q(B1, . . . , Bm−1)

,

which is X0 in the Theorem.

We say that D is of minimal type if D = D(X0) where X0 is defined
in Theorem 2.2.

Note that there is no minimal type for m ≤ 3.
If D is not of minimal type, then deg UD ≤ deg A0. So, we have

deg TD = deg AD + deg UD ≤ 2 deg A0 = deg D

as well as deg UD < deg D. So, non-minimal type D satisfies goemetric
analogue of Ackeny-Artin-Chowla-Mordell conjecture.

Goemetric analogue of Ackeny-Artin-Chowla-Mordell con-
jecture. For a monic square free polynomial P of even degree, UP 6≡ 0
mod P .

Let µD be the quasi-period of
√

D. It is shown in the proof of Theo-
rem 2.2 that deg UD < deg D for µD ≤ 3.

Proposition 2.3. Let D be a squarefree monic polynomial of even
degree.

i) If µD ≤ 4, then deg UD < deg D.
ii) If µD = 5, then UD 6≡ 0 mod D.

Proof. i) Suppose that µD = 4. Then c = 1 since µD − 1 is odd.
Therefore √

D = [A0,M, N, M, 2A0,M,N,M, 2A0]
for some M, N ∈ A. Let Pi/Qi be the i-th convergent of

[0;M, N, cM, 2A0/c, cM,N,M, 2A0].

Then we have

P0 = 0, P1 = 1, P2 = N, P3 = MN + 1,

Q0 = 1, Q1 = M, Q2 = MN + 1, Q3 = M2N + 2M

and, by (2.2),
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D = A2
0 + B = A2

0 +
2A0(MN + 1) + N

M2N + 2M
.

Since D 6= A2
0 and D ∈ A, M2N + 2M divides 2A0(MN + 1) + N . So

we can write 2A0 = MK + R where K 6= 0 and deg R < deg M . Then
B = K + G with deg G < deg K. Note that

G =
R(MN + 1) + N −KM

M2N + 2M
∈ A.

Case 1. Assume G = 0. In this case we have

2A0 = MK + R = N(RM + 1) + 2R.

Note R 6= 0: for, if R = 0, then 2A0 = N and µD < 4. Therefore

deg D = 2deg A0

= 2(deg M + deg N + deg R) > 2 deg M + deg N = deg Q3 = deg UD.

Case 2. Assume G = R(MN+1)+N−KM
M2N+2M

6= 0. Then deg KM ≥ deg M2N
since deg R < deg M . Therefore deg K ≥ deg M + deg N and

deg A0 = deg K + deg M ≥ 2 deg M + deg N = deg Q3 = deg UD.

So, deg D = 2 deg A0 > deg UD.

ii) Write
√

D = [A0; M, N, N/c, cM, 2A0/c, cM,N/c, N, M, 2A0].

Then

P0 = 0, P1 = 1, P2 = N, P3 = N2/c + 1, P4 = MN2 + cM + N,

Q0 = 1, Q1 = M, Q2 = MN + 1, Q3 = MN2/c + M + N/c,

and
Q4 = M2N2 + cM2 + 2MN + 1.

As before, D = A2
0 + B, where B :=

2A0(MN2 + N + cM) + N2 + c

M2N2 + cM2 + 2MN + 1
.

Since 0 6= B ∈ A, we need deg A0 ≥ deg M . Again, by writing 2A0 =
MK + R with deg R < deg M , we can assume that B = K + H with
deg H < deg K, where

(2.3) H =
R(MN2 + cM + N) + N2 + c−K(MN + 1)

M2N2 + cM2 + 2MN + 1
.
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Case 1. H = 0: From (2.3), H = 0 ⇐⇒ K(MN + 1) = R(MN2 +
cM + N) + N2 + c = RN(MN + 1) + cMR + N2 + c. So

(2.4) K = RN + S, where S =
cRM + N2 + c

MN + 1

Thus

(2.5) 2A0 = MK + R = M(RN + S) + R = R(MN + 1) + MS.

We claim that R 6= 0 if µD = 5. Suppose R = 0, then we get from
(2.4) that

K = S =
N2 + c

MN + 1
, i.e., N(N −MK) = K − c.

Since deg(N(M−MK)) ≥ deg N unless N−MK = 0 and deg(K−c) =
deg N−deg M , we must have K = c and N = MK = cM , which implies
that µD = 2 since

√
D = [A0, M, cM ].

If deg R > 0, then

deg D = 2 deg A0 = 2 deg(MNR) > 2 deg MN = deg Q4 = deg UD,

and thus UD 6≡ 0 mod D.
Now suppose that R = a ∈ F∗q and that Q4 = UD ≡ 0 mod D. Since

deg D = deg Q4, Q4 = bD for some b ∈ F∗q . Note that, using (2.4), (2.5))
and our assumptions,

D = A2
0 + B

=
a2M2N2 + a2 + S2M2 + 2aM2NS + 2aMS + 2a2MN + 4aN + 4S

4
.

Thus b = 4/a2 and

Q4 = bD = M2N2+2MN+1+
S2M2 + 2aM2NS + 2aMS + 4aN + 4S

a2
.

Thus

(2.6) a2cM2 = S2M2 + 2aM2NS + 2aMS + 4aN + 4S.

Since deg S = deg N − deg M ≥ 0, the degree of RHS of (2.6) is
2 deg N + deg M , which is bigger that the degree of LHS, and we get a
contradiction.

Case 2. H 6= 0 : From (2.3), we see that

deg K ≥ deg M + deg N
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as in i). Now we see that
deg D = 2 deg A0

= 2(deg M + deg K) ≥ 4 deg M + 2 deg N > deg Q4 = deg UD,

as desired.

As a corollary of Proposition 2.3, we get another proof of geometric
version of Ankeny-Artin-Chowla-Mordell conjecture when µD ≤ 5 over
a field of odd characteristic.

3. Continued fractions and fundamental units: even charac-
teristic

In this section we assume that q is a power of 2 and we consider
the same problem as that of section 1 in characteristic 2. Let S be the
set of all pairs (A,B), A,B ∈ A, A nonconstant polynomial such that
X2 + AX + B is irreducible and the solution y(A,B) ∈ k̄ generate a real
quadratic extension of k. Let S ′ be the set of all pairs (A, B), A, B ∈ A,
A monic nonconstant polynomial such that

(3.1) X2 + AX + B ≡ 0 mod C2

has no solution in A for each nonconstant divisor C of A. Assume
that y = y(A,B) satisfies |y| > 1. It is well-known that any real quadratic
function field K is of the form K = k(y(A,B)) =: k(A,B) for some (A,B) ∈
S ′. It is shown in [1] that the ring of integers of k(y) is k[y] for (A,B) ∈
S ′. The problem is that different pairs in S ′ can determine the same
quadratic extension. In the next lemma, we solve this problem.

Lemma 3.1. Let S ′′ be the subset of S ′ such that deg B < deg A.
Then there is a one-to-one correspondence between the set of real qua-
dratic function fields and the set S ′′.

Proof. Let y = y(A,B) be a zero of X2 + AX + B. We may assume
that deg B < 2 deg A since X2 +AX +B ≡ 0 mod A2 has no solutions.

Suppose that deg B ≥ deg A. Then there exist Q and R in A such
that B = AQ + R with deg R < deg A. Then y′ = y + Q is a root of
X2+AX+(Q2+R), and y and y′ generate the same quadratic extension.
Note that either deg(Q2 + R) ≤ deg R < deg A or deg(Q2 + R) =
deg Q2 = 2 deg B − deg A < deg B since deg B < 2 deg A. One can
continue this process to get deg B < deg A.

Now suppose that k(y(A,B)) = k(y(A′,B′)) = K for (A,B) and (A′, B′) ∈
S ′′. Since A is an invariant of K ([1], Lemma 5.2), we must have A = A′.
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Then B′ = B + U2 + AU for some U ∈ A. Since deg B′, deg B < deg A,
we need deg(U2 + AU) = deg U + deg(U + A) < deg A, which is impos-
sible unless U = 0. So, B = B′.

Lemma 3.2. If (A,B) ∈ S ′′, then y = y(A,B) is reduced, that is,
|A| = |y| > 1 > |y+A|. In fact, y+[y]+A is reduced for any (A,B) ∈ S.

Proof. This follows from the fact that the conjugate ȳ of y is y + A,
and that [y] = A in the case (A, B) ∈ S ′′.

Now we see from [13], §5 that if [y] = A, then the continued fraction
expansion of y is

y = [A; B1, . . . , Bm−1, A/c,Bm−1, . . . , B1, A],

where {B1, . . . , Bm−1} is c-symmetric. Imitating almost the same proof
of Theorem 2.1 in [3], we get the following theorem.

Theorem 3.3. Let m be a positive integer and c ∈ F∗q , and let
{B1, . . . , Bm−1} be a set of nonconstant polynomials in A. Then the
equation

y(A,B) = [A,B1, . . . , Bm−1, A/c,Bm−1, . . . , B1]

has infinitely many solutions (A,B) ∈ S if and only if {Bi} is c-symmetric.
In this case,

(3.2) A = cQ(B1, . . . , Bm−2)Q(B2, . . . , Bm−2) + XQ(B1, . . . , Bm−1)

and
B = cQ(B2, . . . , Bm−2)2 + cXQ(B1, . . . , Bm−2),

for X ∈ A so that A is monic.

We say that (A,B) ∈ S is of minimal type if (A,B) is obtained by
taking

X = X0 =
[
cQ(B1, . . . , Bm−2)Q(B2, . . . , Bm−2)

Q(B1, . . . , Bm−1)

]
,

that is, deg A < deg Q(B1, . . . , Bm−1) = (deg B1 + · · ·+ deg Bm−1).
Assume that (A,B) ∈ S ′′. Let ε = ε(A,B) = T(A,B) + U(A,B)y(A,B) be

the fundamental unit. Then as in the odd characteristic case U(A,B) =
Q(B1, . . . , Bm−1). If (A,B) ∈ S ′′ is not of minimal type, then deg A ≥
deg Q(B1, . . . , Bm−1) and so

deg T(A,B) = deg A + deg Q(B1, . . . , Bm−1) ≤ 2 deg A.

Now Proposition 3.4 and 3.5 are characteristic 2 analog of Propo-
sition 2.3 (i) and (ii) respectively. Let m be a positive integer and
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{B1, . . . , Bm−1} be a c-symmetric set. Define the set T (m;B1, . . . , Bm−1)
by

T (m; B1, . . . , Bm−1) := {(A,B) ∈ S ′′ : y(A,B)

= [A;B1, . . . , Bm−1, A/c, Bm−1, . . . , B1]}.
Let µ(A,B) be the length of the quasi-period of y(A,B).

Proposition 3.4. For any (A,B) ∈ S ′′ with µ(A,B) ≤ 4, U(A,B) 6≡ 0
mod A.

Proof. If µ(A,B) ≤ 3, then deg A > deg U(A,B) by the equation (3.2).
Let y := y(A,B), U := U(A,B) and µ = µ(A,B) for simplicity. Suppose
that µ = 4. Since µ− 1 is odd, we have c = 1.

y = [A,M,N,M ].

Let Pi/Qi be the i-th convergent of [0;M, N, M,A]. One can easily
compute that

P0 = 0, P1 = 1, P2 = N, P3 = MN + 1,

Q0 = 1, Q1 = M, Q2 = MN + 1, Q3 = M2N

and

B =
A(MN + 1) + N

M2N
.

Since 0 6= B = A(MN+1)+N
M2N

∈ A, deg A ≥ deg M . Let A = MK + R
with deg R < deg M , and let B = K + G with deg G < deg K. Then
G = R(MN+1)+N−KM

M2N
∈ A.

Case 1. G = 0: In this case we have

A = MK + R = N(RM + 1).

If R = 0, then A = N and µD < 4. So we assume that R 6= 0. Suppose
that U = M2N ≡ 0 mod A. Then MR + 1 divides M2, which is
impossible.

Case 2. G 6= 0: Since deg R < deg M and 0 6= G = R(MN+1)+N−KM
M2N

∈
A, we have deg KM ≥ deg M2N , which implies that

deg K ≥ deg M + deg N.

If deg K > deg M + deg N , then deg A > 2 deg M + deg N = deg U and
we are done. Assume deg K = deg M + deg N . Then G = a ∈ F∗q . Then

MK = aM2N + R(MN + 1) + N and A = aM2N + RMN + N.

Suppose that U = M2N ≡ 0 mod A. Then we must have that 0 =
RMN + N = N(RM + 1), which is impossible.
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Proposition 3.5. Let (A,B) ∈ S ′′ with µ(A,B) = 5 such that

y(A,B) = [A,M,N, N/c, cM, A/c, cM, N/c,N,M ].

If deg N < deg M , then U(A,B) 6≡ 0 mod A.

Proof. From the proof of Proposition 2.3(ii), (3.1) and (3.2), it is easy
to get

U = U(A,B) = M2N2 + cM2 + 1,

A = (MN2 + cM + N)(N2/c + 1) + X(M2N2 + cM2 + 1),
B = c(N2/c + 1)2 + X(MN2 + cM + N).

Note that both MN2 + cM + N and (N2/c + 1) are relatively prime to
(M2N2 + cM2 + 1). Therefore A 6 |U if X = 0. So, assume that X 6= 0.

If deg N < 1
2 deg M , i.e., deg(MN4) < deg(M2N2) = deg U , then

A 6 |U too.
Suppose that 1

2 deg M ≤ deg N < deg M and A = E + XU | U ,
where E = (MN2 + cM + N)(N2/c + 1). Then U = Y E + XY U and
Y E = (XY +1)U . Since (E, U) = 1 and (Y,XY +1) = 1, we must have

E = XY + 1 and Y = U.

By comparing degrees, we have deg X = deg E − deg U = 2 deg N −
deg M ≥ 0. Having deg(N2) ≥ deg M , there exist R and S such that
N2/c + 1 = MR + S with R 6= 0 and deg S < deg M . Then from
E = XY + 1 and Y = U , we must have X = R and

MNR + MN2S + cMS + NS + R + 1 = 0,

which implies that S 6= 0 and 0 ≤ deg S = deg N − deg M . Now from
the equations of A and U , we get the result.

4. Bounds for L(1, χ)

Let χ be a nonprincipal quadratic character with conductor D of
degree 2d > 0. Then it is known that

L(s, χ) =
2d−2∏

i=1

(1− πi(χ)q−s),

with |πi(χ)| = √
q, from which we have trivial bounds for |L(1, χ)|;

(1−√q)2d−2 ≤ |L(1, χ)| ≤ (1 +
√

q)2d−2.

But these bounds are not useful, and we will obtain better bounds for
our purpose.
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Note that

L(s, χ) =
∑

M∈A+

χ(M)
qdeg(A)s

=
∞∑

m=0

χmq−ms

where χm :=
∑

M ∈ A+, deg M = mχ(M) for nonnegative integer m.
It is known that χm = 0 for m > 2d− 2 and ([5])

(4.1) |χm| ≤ 2
√

q2d−2 = 2qd−1, |χm| ≤ qm for m ≤ d− 1.

Using these inequalities, we obtain the following upper bound.

Proposition 4.1. |L(1, χ)| ≤ d + 2B < d + 1, where

B =
d−1∑

n=1

1
qn

=
qd−1 − 1
qd − qd−1

<
1

q − 1
≤ 1

2
.

We also have, from (4.1),

Lemma 4.2. For |s− 2| ≤ 4/3, we have

|L(s, χ)| ≤ 2qd−1 < qd = |D|1/2

for all d for q ≥ 5, d ≥ 2 for q = 3, and d ≥ 5 for q = 2.

Due to the above Lemma and Lemma 11.7 in [9], we have

Theorem 4.3. For 0 < ε ≤ 4/27, we have

L(1, χ) ≥ ε/16
|D|ε/2

for all d for q ≥ 5, d ≥ 2 for q = 3, and d ≥ 5 for q = 2.

Proof. From Lemma 11.7 in [Wa], L(1, χ) ≥ 1
4(1− α)(|D|1/2)−4(1−α)

for 26/27 ≤ α < 1. By taking 4(1 − α) = ε, we get our lower bound of
L(1, χ).

5. Yokoi’s invariants in odd characteristic

Let D be a square-free monic polynomial of even degree 2d. Let εD =
TD +UD

√
D be the fundamental unit of KD with α = N(εD) = 1 where

γ a fixed generator of F∗q . Let ND and AD be the unique polynomials
such that

TD = U2
DND + AD,
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with AD = 0 or deg AD < deg U2
D. We call ND the Yokoi invariant of

D (cf.[10], [11]). Since

DU2
D = T 2

D − α = U4
DN2

D + 2ADU2
DND + A2

D − α,

there exists a unique BD such that A2
D − α = BDU2

D. Then

(5.1) D = U2
DN2

D + 2ADND + BD = TDND + ADND + BD.

Note that if deg UD > 0, then AD cannot be 0 since A2
D−α = BDU2

D.
If AD 6= 0, then BD = 0 when A2

D = α, or deg BD = 2 deg AD −
2 deg UD < deg AD.

Lemma 5.1. We have ND = [D/TD], where [x] denotes the polyno-
mial part of x. Moreover, if AD = 0, then D = (βTD)2 − β2α, that is,
D is of Chowla type.

Proof. Suppose that ND = 0, that is, deg TD < 2 deg UD. Since
T 2

D−DU2
D = α ∈ F∗q , deg D = 2deg TD−2 deg UD = deg TD +(deg TD−

2 deg UD) < deg TD, so [D/TD] = 0.
Assume now that ND 6= 0, that is, deg TD ≥ 2 deg UD. Then from

(5.1) [D/TD] = ND since deg TD = 2 deg UD + deg ND > deg AD +
deg ND and deg BD < deg AD < deg TD (unless BD = 0).

If AD = 0, then UD ∈ F∗q and D = T 2
Dβ2 − αβ2 for some β ∈ F∗q .

In the proof of Lemma 5.1, we also observed the followings.
(1) The three conditions are equivalent:

i) ND = 0 ii) deg D < deg TD iii) deg TD < 2 deg UD.
(2) AD = 0 holds only if deg UD = 0.
Therefore if ND 6= 0, deg D ≥ deg TD ≥ 2 deg UD. Thus UD 6≡ 0

mod D since deg UD < deg D. This is another proof of geometric version
of Ankeny-Artin-Chowla conjecture.

Using Proposition 4.1, Theorem 4.3 and the fact that

L(1, χ) =
q − 1√
|D|hDRD,

where hD is the ideal class number of OD and RD = log |εD| is the
regulator of OD, we get the bound for hD in the following.

Theorem 5.2. Let D be a monic square-free polynomial of even
degree and ND be Yokoi invariant of D explained before. Then

(1) deg εD =

{
deg D − deg ND if ND 6= 0
deg TD > deg D if ND = 0

.
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(2) If ND 6= 0, then

ε

16
qd(1−ε)

(q − 1)(2d− deg ND) log q
< hD <

qd(d + 1)
(q − 1)(2d− deg ND) log q

for 0 < ε < 4/27. For left inequality, we need that d ≥ 2 for q = 3
and d ≥ 5 for q = 2.

Note that deg TD < deg U2
D if ND = 0. We now can derive the similar

bound for hD by using polynomial part
[

U2
D

TD

]
of U2

D
TD

instead of
[

D
TD

]
. For

this, we write TD = DMD + ED where deg ED < deg D. Note ED = 0
cannot happen since T 2

D ≡ E2
D ≡ α mod D. We now claim

(5.2)
[
U2

D

TD

]
= MD.

For, if MD = 0, then deg TD < deg D, deg U2
D = deg T 2

D − deg D =

deg TD +(deg TD−deg D) < deg TD. Therefore if MD = 0, then
[

U2
D

TD

]
=

0. Suppose MD 6= 0. Then, if one writes E2
D − α = DFD,

U2
D = DM2

D + 2EDMD + FD = mDTD + EDMD + FD.

Again by degree computation,
[

U2
D

TD

]
= MD.

Note that if D is not of minimal type, then MD = 0 or mD =
deg MD = 0.

Theorem 5.3. Let P be a monic prime of even degree. Then Ankeny-
Artin-Chowla-Mordell conjecture is true if and only if EP FP 6≡ 2αMP

mod P . In particular, if MP ≡ 0 mod P , then Ankeny-Artin-Chowla-
Mordell conjecture is true.

Proof. Suppose that MP ≡ 0 mod P . Note that EP 6≡ 0 mod P
and α = γ, which is not a square in Fq. Thus FP 6≡ 0 mod P . The
others are straightforward.

The following Theorem is analog of Theorem 5.2 using MD in equa-
tion (5.2). Note that from the definition that deg ND > 0 (resp. ND = 0)
if and only if MD = 0 (resp. deg MD > 0).

Theorem 5.4. For any monic square-free polynomial D of even de-
gree 2d > 0,

(1) [εD/D] = 2MD
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(2) If MD 6= 0, then

εqd(1−ε)

16(q − 1)(2d + deg MD) log q
< hD <

qd(d + 1)
(q − 1)(2d + deg MD) log q

.

where 0 < ε < 4/27. For left inequality, we need that d ≥ 2 for
q = 3 and d ≥ 5 for q = 2.

Proof. (1) Let [UD

√
D/D] = M ′, that is, UD

√
D = M ′D + b with

|b| < |D|. Then

1 > |TD − UD

√
D| = |(MD −M ′)D + (ED − b)|.

We must have M ′ = MD and [εD/D] = 2MD.
(2) follow from Proposition 4.1, Theorem 4.3 and (1).

A solution (X, Y ) of X2 − DY 2 = βZ with monic Z and β ∈ F∗q is
said to be trivial if Z = M2 and M divides both X and Y .

Lemma 5.5. If there is a nontrivial solution to X2−DY 2 = βZ, then

deg Z ≥ deg ND.

Proof. With the notations of §1, we see that

nD = deg ND = d− (deg B1 + · · ·+ deg Bm−1).

By Lemma 1.24 and 1.25 of [3],

deg Z = d− deg Bi,

for some 0 < i < m. Hence we get the result.

Now following the arguments of [7], §3, and using [1] Proposition 4.1,
we get

Theorem 5.6. (1) Let pD be the least degree of primes which splits

in k(
√

D). If nD = deg ND 6= 0, then hD ≥ nD/pD.
(2) If nD ≥ d− 1 and h(D) = 1, then D is Richard-Degret type.

(3) Let pD be the least degree of primes which is noninert in k(
√

D).
If nD = deg ND 6= 0 and hD is odd, then hD ≥ nD/pD.

6. Real quadratic function fields of minimal type with qusi-
period 4

We have the following analogue of Siegel’s theorem, which follows
easily from Theorem 7.6.3 of [8].
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Proposition 6.1. Let D be a monic square-free polynomial of even
degree. We have

lim
deg D→∞

log(hD deg εD)
log |D| =

1
2
.

Lemma 6.2. Let {Dn} be a sequence of monic square-free polynomials
such that deg Dn →∞ as n →∞ and deg Dn ≤ deg Dn+1. Assume that
MDn 6= 0, and that the sequence {mDn = deg MDn} is bounded. Then
the sequence {hDn} is not bounded.

Proof. By Theorem 5.4(1),

deg εDn = deg Dn + deg MDn ,

and so
lim

n→∞
log deg εDn

log |Dn| = 0.

If {hDn} is bounded, then we get a contradiction from Proposition 6.1.

Now we construct a family of monic polynomials of minimal type
with quasi-period 4.

Proposition 6.3. Let B be a nonconstant polynomial. For any
nonzero polynomials E and F with deg F < deg B, we put

D = D(E,F ) :=
1
4
(B2EF −BE + BF 2 + F )2 −BEF + E − F 2

=
1
4
(B(BF − 1))2E2 +

1
2
((BF )2 − 1)(BF − 2)E +

1
4
(BF − 1)2F 2.

Then D is of minimal type with period and quasi-period 4 and√
D =[−(B2EF −BE + BF 2 + F )/2,

B, BEF,B,−(B2EF + BE + BF 2 + F )].

Furthermore, if D is square-free, then MD = −2([B/F ] + [1/F 2] +
2[1/E]).

Lemma 6.4. (Nagell, Theorem 45) Let f(X) = αX2 + βX + γ be a
quadratic polynomial in A[X] with α monic. For each integer t, there
exist infinitely many irreducibles P which is a divisor of f(T ) with some
polynomial T with degree ≥ t

Proof. The proof is exactly the same as the case of Z.

Assuming Lemma 6.4, we can prove the following analogue of [6],
Proposition 6.1.
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Proposition 6.5. Let f(X) be as in Lemma 6.4. Let t1 be a positive
integer such that for any A with deg A ≥ t1, the leading coefficient of
f(A) is a square in F∗q . Suppose that the discriminant d(f) = β2−4αγ is
not 0 and that gcd(α, β, γ) is square-free. Then, the set {f(A) : deg A ≥
t1} contains infinitely many square-free elements.

Proof. For any real number x > t1, define

A(x) := #{A ∈ A| t1 ≤ deg A ≤ x, f(A) is square-free}.
Our aim is to prove A(x) → ∞ as x → ∞. By Lemma 6.4, there
exist infinitely many monic irreducibles P which is a divisor of f(A)
for some A with deg A ≥ t1. We arrange these P1, P2, . . . , so that
deg Pi ≤ deg Pi+1. As

∑

i

1
|P |2 <

∑

i

1
qi

=
q

q − 1
< ∞,

there is a number m ≥ 2 such that

(6.1)
∞∑

i=m

1
|Pi|2 <

q − 1
2q

,

and
Pi 6 |α · d(f) if i ≥ m.

Put
P := P 2

1 · · ·P 2
m−1.

As in the proof of Proposition 6.1, [6], there exists A0,i ∈ A such that
ordPi(f(A0,i)) < 2 for each i (1 ≤ i ≤ m− 1) and A0 ∈ A with deg A0 >
t1 such that

T0 ≡ A0,i mod P 2
i , for 1 ≤ i ≤ m− 1.

Consider a quadratic polynomial

g(Y ) := f(PY + A0) ∈ A[Y ].

Define, for a positive real number y > deg A0 − deg P,

B(y) := #{A ∈ A : deg A0 − deg P < deg A ≤ y, g(A) is square-free}.
Then, for y > deg T0 − deg P,

A(deg P + y) ≥ B(y).

For a monic irreducible P and a real number y > deg T0 − deg P, we
define

B̂P (y) := #{A ∈ A : deg A0 − deg P < deg A ≤ y, g(A) ≡ 0 mod P 2}.
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Then we have

B(y) ≥ (qy − qdeg A0−deg P)−
∑

P

B̂P (y).

(I) If P is different from Pi’s, i ≥ 1, then P does not divide f(A)
for all A with deg A ≥ t1. Hence P does not divide g(A) for all A with
deg A > deg A0 − deg P. Thus B̂P (y) = 0 in this case.

(II) Suppose that P = Pi for some 1 ≤ i ≤ m− 1. Since PA + T0 ≡
A0 ≡ A0,i mod P 2

i , we see that g(A) ≡ f(A0,i) 6≡ 0 mod P 2
i . Hence

B̂P (y) = 0 in this case, too.
Let G = gcd(α, β, γ), and

f(X) = G
ν∏

k=1

fk(X),

be the factorization of f(X) into irreducible polynomials in A[X] (ν = 1
or 2). Then

g(Y ) = G
ν∏

k=1

gk(X), gk(Y ) := fk(PY + A0).

Let nk = deg fk(X). Then there are some real numbers yk > 0 and
ck > 0 such that

deg A ≥ yk ⇒ deg gk(A) < ck + nk deg A,

deg A ≥ yk, deg A ≥ deg B ≥ deg A0 − deg P ⇒ deg gk(B) ≤ deg gk(A).
Put y0 := max{yk} and c := max{ck}, and assume that y ≥ y0.

(III) Suppose that P = Pi and deg Pi > c + y with some i ≥ m. Let
T ∈ A with deg T0 − deg P ≤ deg T ≤ y = deg A, we have

deg gk(T ) ≤ deg gk(A) < ck + nk deg A ≤ nk(ck + deg A) < nk deg P.

As nk ≤ 2 and gk(T ) 6= 0, gk(T ) cannot be divisible buy P 2. If ν = 1,
we are done.

Now assume that ν = 2. Similar process as in [6] will give the result.
(IV) Suppose that P = Pi and deg Pi ≤ c + y with i ≥ m. If d ≥

2 deg P , then for each residue class modulo P 2, there are (q−1)qd−2 deg P

elements of Ad. Let `i := max{2 deg Pi, deg A0 − deg P}. Then we can
see that

B̂P (y) ≤ 1 + (qy−`+1 − 1)
∑

A mod P2

g(A)≡0 mod P2

1 ≤ 2qy−`i+1.

Now, using (I)-(IV) and (6.1), we have
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(6.2)

B(y) ≥ (qy+1 − qdeg A0−degP)−
∑

i≥m, deg Pi≤c+y

BPi(y)

≥ (qy+1 − qdeg A0−degP)−
∑

i≥m, deg Pi≤c+y

2qy−`i+1

≥ qy+1(1− q − 1
q

)− qdeg A0−deg P.

The last term in (6.2) tends to ∞ as y → ∞, and this proves our
proposition.

Theorem 6.6. Let B be a nonconstant monic polynomial with B +1
square-free. Then for any positive integer h, there exist infinitely many
real quadratic function fields k(

√
D) with period and quasi-period 4 of

minimal type such that hD > h and MD = 2(B − 1).

Proof. In Proposition 6.3, we take F = −1 and deg E > 0. Then, if
D is square-free, then MD = 2B +2. Taking 2V = E, we easily see that

D(V ) = B2(B + 1)2V 2 − (B2 − 1)(B + 2)V +
(B + 1)2

4
.

Also it is easy to see that gcd(B2(B + 1)2, (B2 − 1)(B − 2), (B +
1)2) = B + 1, which is square-free by assumption. Thus the quadratic
polynomial D(V ) satisfies the conditions of Proposition 6.5. Now apply
Proposition 6.5 and Lemma 6.2 to get the result.

7. Yokoi’s invariants in even characteristic

In this section we consider Yokoi’s invariants in even characteristic.
We have the following variant of Siegel’s theorem in characteristic 2,

which also follows from Theorem 7.6.3 of [8].

Proposition 7.1. Let (A,B) ∈ S ′′. We have

lim
deg A→∞

log(h(A,B) deg ε(A,B))
log |A| = 1.

Let (A,B) ∈ S ′′ and y = y(A,B) be as in §2. Let y′ be the conjugate
of y and

ε = T + Uy = T ′ + U ′y′
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be the fundamental unit of K(A,B). We define Yokoi’s invariants N =
N(A,B) and M = M(A,B) by

T ′ = (U ′)2N + E and (U ′)2 = T ′M + F

with deg E < deg(U ′)2 and deg F < deg T ′.

Remark 7.2. The reason for using y′ instead of y is that y is reduced,
but y′ is not as

√
D. If we use y, then we always have N = 0. Note also

that U ′ = U .

Proposition 7.3. Let the notation be as above. Then

N =
[

A

U ′

]
=

[
A2

T ′

]
and M =

[
U ′

A

]
=

[
T ′

A2

]
.

Proof. Since yy′ = B and |y′| < 1, we easily see that |T ′ + U ′A| =
|U ′y′| < |U ′|. Thus T ′ = U ′A + V with deg V < deg U ′, which implies
that N = [A/U ′]. Let A = U ′N + W with deg W < deg U ′. Then

A2 = A(U ′N + W ) = (AU ′ + V )N + AW + V N = T ′N + AW + V N,

and it is easy to see that deg AW < deg AU = deg T ′ and deg V N =
deg V + deg A− deg U < deg A ≤ deg AU = deg T ′. Thus N = [A2/T ].

Let T ′ + U ′A = V with deg V < deg U . We have, since the polyno-
mial part function [·] is additive, [(U ′)2/T ′] = [U ′/A] + [U ′V/AT ′] and
[T ′/A2] = [U ′/A] + [V/A2]. Now one can show easily that deg U ′V <
deg AT and deg V < deg A2, which implies the result for M .

Let χ(A,B) be the quadratic character for k(A,B)/k. Then it is known
that the conductor of χ(A,B) is A2 ([4]). Then as in the odd characteristic
case we have;

Theorem 7.4. Let the notation be as above. Let d = deg A. Then

i) deg ε(A,B) =

{
2 deg A− deg N if N 6= 0
2 deg A + deg M if M 6= 0

ii) If N 6= 0, then

h(A,B) <
qd(d + 1)

(q − 1)(2d− deg N) log q
.

If deg M 6= 0, then

h(A,B) <
qd(d + 1)

(q − 1)(2d + deg M) log q
.
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iii) Let 0 < ε < 4/27. Assume that d ≥ 2 for q = 3 and d ≥ 5 for
q = 2. If N 6= 0, then

h(A,B) >
εqd(1−ε)

16(q − 1)(2d− deg N) log q
.

If M 6= 0, then

h(A,B) >
εqd(1−ε)

16(q − 1)(2d + deg M) log q
.

Proposition 7.5. Let the notation be as above. Let C be a noncon-
stant polynomial. For any nonzero polynomials E and F with deg F <
deg C, we put

A := (CE+F )(CF +1) and B := (CF +1)E+F 2 = (CE+F )F +E.

Then (A,B) is of minimal type with period and quasi-period 4 and

y(A,B) = [A,C, CE + F,C] and y′(A,B) = [0, C, CE + F, C,A].

Moreover, if (A, B) ∈ S ′′, then the Yokoi’s invariant M = [C/F ] +
[1/E].

Now the problem is to show that there exist infinitely many pairs
(E,F ) such that ((CE + F )(CF + 1), (CE + F ) + E)S ′′. Suppose that
F = 1 and P = C + 1 is irreducible.

Lemma 7.6. Let P = C + 1 be irreducible. If Q = CG2 + 1 with
deg G > 0 is irreducible, then (A, B) ∈ S ′′ for A = (CG2 + 1)(C + 1) =
PQ and B = CG2 + 1 + G2 = PG2 + 1 = Q + G2.

Proof. We need to check that

X2 + AX + B ≡ 0 mod H2

has no solution for H = P or Q. Suppose that we have a solution x for
H = Q. Then x ≡ G mod Q. Write x = G + QL. Then

G2 + PQG + Q + G2 ≡ 0 mod Q2,

that is, PG+1 ≡ 0 mod Q, which is impossible, since deg Q > deg(PG+
1). Similarly we get the result for H = P .

Corollary 7.7. Let C be nonconstant polynomial with P = C + 1
irreducible. If Bunyakovsky’s conjecture for f(X) = CX2 + 1 is true,
then there exist infinitely many real quadratic function fields K(A,B)

with period and quasi-period 4 of minimal type such that h(A,B) > h
and M = C.



Real quadratic function field 203

References

[1] S. Bae, Real quadratic function fields of Richaud-Degert type with ideal class
number one, Proc. AMS 140 (2012), 403-414.

[2] D. Byeon and S. Lee, A note on units of real quadratic fields, Bull. Korean
Math. Soc. 49 (2012), 767-774.

[3] C. Friesen, Continued fractions and real quadratic function fields, Doctoral
Thesis, Brown University (1989).

[4] R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction, J.
Number Th. 90 (2001), 143-153.

[5] C. N. Hsu, Estimates for coefficients of L-functions for function fields, Finite
Fields and their Appl. 5 (1999), 76-88.

[6] F. Kawamoto and K. Tomita, Continued fractions and certain real quadratic
fields of minimal type, J. Math. Soc. Japan 60 (2008), 865-903.

[7] R. A. Mollin and H. C. Williams, A complete generalization of Yokoi’s p-
invariants, Colloquium Mathematicum 63 (1992), 285-294.

[8] G. D. Villa Salvador, Topics in the theory of algebraic function fields,
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